首页> 外文OA文献 >Anticommuting Integrals and Fermionic Field Theories for Two-Dimensional Ising Models
【2h】

Anticommuting Integrals and Fermionic Field Theories for Two-Dimensional Ising Models

机译:二维空间的反证积分和费米子场理论   Ising模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We review the applications of the integral over anticommuting Grassmannvariables (nonquantum fermionic fields) to the analytic solutions and thefield-theoretical formulations for the 2D Ising models. The 2D Ising modelpartition function $Q$ is presentable as the fermionic Gaussian integral. Theuse of the spin-polynomial interpretation of the 2D Ising problem is stressed,in particular. Starting with the spin-polynomial interpretation of the localBoltzmann weights, the Gaussian integral for $Q$ appears in the universal formfor a variety of lattices, including the standard rectangular, triangular, andhexagonal lattices, and with the minimal number of fermionic variables (two persite). The analytic solutions for the correspondent 2D Ising models then followby passing to the momentum space on a lattice. The symmetries and the questionon the location of critical point have an interesting interpretation withinthis spin-polynomial formulation of the problem. From the exact lattice theorywe then pass to the continuum-limit field-theoretical interpretation of the 2DIsing models. The continuum theory captures all relevant features of theoriginal models near $T_c$. The continuum limit corresponds to the low-momentumsector of the exact theory responsible for the critical-point singularities andthe large-distance behaviour of correlations. The resulting field theory is themassive two-component Majorana theory, with mass vanishing at $T_c$. Bydoubling of fermions in the Majorana representation, we obtain as well the 2DDirac field theory of charged fermions for 2D Ising models. The differencesbetween particular 2D Ising lattices are merely adsorbed, in thefield-theoretical formulation, in the definition of the effective mass.
机译:我们回顾了反换向格拉斯曼变量(非量子费米场)上积分的应用到二维伊辛模型的解析解和场论公式中。 2D Ising模型分区函数$ Q $可表示为费米离子高斯积分。特别强调了二维Ising问题的自旋多项式解释的使用。从对局部玻尔兹曼权重的自旋多项式解释开始,$ Q $的高斯积分以通用形式出现在各种晶格中,包括标准的矩形,三角形和六边形晶格,并且铁氧离子变量的数量最少(两个位点)。然后,相应的2D Ising模型的解析解传递到晶格上的动量空间。在该问题的自旋多项式形式中,临界点的对称性和问题具有有趣的解释。然后从精确的晶格理论转到2DIsing模型的连续极限场理论解释。连续体理论捕获了$ T_c $附近的原始模型的所有相关特征。连续极限对应于负责临界点奇点和相关性的大距离行为的精确理论的低动量部分。由此产生的场论是大规模的两成分马约拉那论,质量在$ T_c $消失。通过将马里亚纳表示中的费米子加倍,我们还获得了二维伊辛模型带电费米子的2DDirac场论。在场理论公式中,仅在有效质量的定义中吸收了特定2D Ising晶格之间的差异。

著录项

  • 作者

    Plechko, V. N.;

  • 作者单位
  • 年度 1997
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号